5.5 Exponential and Logarithmic Models

Exponential Growth

Estimates of the world population (in millions) from 1995 to 2004 are shown in the table. Determine when the world population will reach 6.8 billion.

Year	Population (P)
1995	5685
1996	5764
1997	5844
1998	5923
1999	6002

Year	Population (P)
2000	6079
2001	6154
2002	6228
2003	6302
2004	6376

Exponential Decay

Find the exponential model that fits the given graph. (0,3)

(0,3) $(2,1.5)^{e}$ $(2,1.5)^{e}$ $3=a(e)^{-b(6)}$ a=3 - b(2) 1.5=3(e) $.5=e^{-2b}$ 2n.5b=.35

Gaussian Model

In 2002, the SAT math scores for collegebound seniors roughly followed the normal distributin:

 $y = .0035e^{(-(x-516)^2)/25,992}$

 $200 \le \times \le 800$, where x is the SAT score for math.

Estimate the average SAT score.

Logistic Growth model

On a college campus of 5000 students, one student returns from vacation with a contagious flu virus. The spread of the virus is modeled by:

 $y = \frac{5000}{1 + 4999e^{-.8t}}$ where y is the total number infected after t days. How many students are infected after 5 days?

Logarithmic models

On the Richter scale, the magnitude R of an earthquake of intensity I is given by:

$$\mathsf{R} = \log_{10} \frac{\mathsf{I}}{\mathsf{I}_{\circ}}$$

where $I_{\circ}\,$ = 1 is the minimum intensity used for comparison.

Find the intensity of an earthquake that measured 8.4 on the Richter scale.